Вариант № 3382

Централизованное тестирование по физике, 2017

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1,4  ±  0,2)  Н записывайте следующим образом: 1,40,2.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
1
Задание № 1145
i

Ма­те­ма­ти­че­ский ма­ят­ник со­вер­ша­ет гар­мо­ни­че­ские ко­ле­ба­ния. Его ско­рость в СИ из­ме­ря­ет­ся в:



2
Задание № 1146
i

Во время ис­пы­та­ния ав­то­мо­би­ля во­ди­тель под­дер­жи­вал по­сто­ян­ную ско­рость, зна­че­ние ко­то­рой ука­зы­ва­ет стрел­ка спи­до­мет­ра, изоб­ражённого на ри­сун­ке. Путь s  =  42 км ав­то­мо­биль про­ехал за про­ме­жу­ток вре­ме­ни \Delta t, рав­ный:



3
Задание № 1147
i

Про­ек­ция ско­ро­сти дви­же­ния тела υx на ось Ox за­ви­сит от вре­ме­ни t со­глас­но за­ко­ну υx  =  A + Bt, где A  =  4 м/с, B  =  −1 м/с2. Этой за­ви­си­мо­сти со­от­вет­ству­ет гра­фик (см. рис.), обо­зна­чен­ный бук­вой:

а)

б)

в)

г)

д)



4
Задание № 1148
i

Ма­те­ри­аль­ная точка дви­жет­ся рав­но­мер­но по окруж­но­сти ра­ди­у­сом R = 19 см со ско­ро­стью, мо­дуль ко­то­рой υ  =  1,9 м/с. Ра­ди­ус-век­тор, про­ведённый из цен­тра окруж­но­сти к ма­те­ри­аль­ной точке, по­вернётся на угол \Delta фи =20 рад за про­ме­жу­ток вре­ме­ни \Delta t, рав­ный:



5
Задание № 1149
i

К не­ко­то­ро­му телу при­ло­же­ны силы \overrightarrowF_1 и \overrightarrowF_2, ле­жа­щие в плос­ко­сти ри­сун­ка (см. рис. 1). На ри­сун­ке 2 на­прав­ле­ние уско­ре­ния \overrightarrowa этого тела обо­зна­че­но циф­рой:

Рис. 1

Рис. 2



6
Задание № 1150
i

Шар объ­е­мом V  =  16,0 дм3, име­ю­щий внут­рен­нюю по­лость объёмом V0  =  15,0 дм3, пла­ва­ет в воде (ρ1 = 1,0 · 103 кг/м3), по­гру­зив­шись в нее ровно на­по­ло­ви­ну. Если мас­сой воз­ду­ха в по­ло­сти шара пре­не­бречь, то плот­ность ρ2 ве­ще­ства, из ко­то­ро­го из­го­тов­лен шар, равна:

При­ме­ча­ние. Объём V шара равен сумме объёма по­ло­сти V0 и объёма ве­ще­ства, из ко­то­ро­го из­го­тов­лен шар.



7
Задание № 1151
i

Ве­ще­ство, на­чаль­ная тем­пе­ра­ту­ра ко­то­ро­го Т1 = 1400 К, охла­ди­ли на |\Delta t|  =  500 °C. Ко­неч­ная тем­пе­ра­ту­ра t2 ве­ще­ства равна:



8
Задание № 1152
i

Число мо­ле­кул N  =  1,7 · 1026 не­ко­то­ро­го ве­ще­ства (ρ = 8,9 г/см3, M = 64 г/моль) за­ни­ма­ет объем V, рав­ный:



9
Задание № 1153
i

С иде­аль­ным газом, ко­ли­че­ство ве­ще­ства ко­то­ро­го по­сто­ян­но, про­во­дят изо­хор­ный про­цесс. Если дав­ле­ние газа уве­ли­чи­ва­ет­ся, то:



10
Задание № 1154
i

Уста­но­ви­те со­от­вет­ствие между при­бо­ром и фи­зи­че­ской ве­ли­чи­ной, ко­то­рую он из­ме­ря­ет:

 

А. Вольт­метр1) сила тока
Б. Ба­ро­метр2) элек­три­че­ское на­пря­же­ние
3) ат­мо­сфер­ное дав­ле­ние


11
Задание № 1155
i

Элек­троёмкость плос­ко­го воз­душ­но­го кон­ден­са­то­ра С1 = 0,2 нФ. Если про­стран­ство между об­клад­ка­ми кон­ден­са­то­ра пол­но­стью за­пол­нить пла­сти­ком, ди­элек­три­че­ская про­ни­ца­е­мость ко­то­ро­го ε = 4, то элек­троёмкость С2 кон­ден­са­то­ра будет равна:



12
Задание № 1156
i

Если сила тока в про­вод­ни­ке I = 4,8 мА, то за про­ме­жу­ток вре­ме­ни \Delta t=4,0 с через по­пе­реч­ное се­че­ние про­вод­ни­ка прой­дут элек­тро­ны, число N ко­то­рых равно:



13
Задание № 1157
i

Три длин­ных тон­ких пря­мо­ли­ней­ных про­вод­ни­ка, сила тока в ко­то­рых оди­на­ко­ва, рас­по­ло­же­ны в воз­ду­хе па­рал­лель­но друг другу так, что цен­тры их по­пе­реч­ных се­че­ний на­хо­дят­ся в вер­ши­нах пря­мо­уголь­но­го рав­но­сто­рон­не­го тре­уголь­ни­ка (см. рис. 1). На­прав­ле­ние век­то­ра ин­дук­ции \vecВ ре­зуль­ти­ру­ю­ще­го маг­нит­но­го поля, со­здан­но­го этими то­ка­ми в точке О, на ри­сун­ке 2 обо­зна­че­но циф­рой:

Рис. 1

Рис. 2



14
Задание № 1158
i

Пря­мо­уголь­ная рамка пло­ща­дью S, из­го­тов­лен­ная из тон­кой про­во­ло­ки, рас­по­ло­же­на в од­но­род­ном маг­нит­ном поле, линии ин­дук­ции ко­то­ро­го пер­пен­ди­ку­ляр­ны плос­ко­сти рамки. В те­че­ние про­ме­жут­ка вре­ме­ни \Delta t=50 мс мо­дуль ин­дук­ции маг­нит­но­го поля рав­но­мер­но умень­шил­ся от В1 = 250 мТл до В2 = 50 мТл. Если ЭДС ин­дук­ции в рамке ε = 3,2 мВ, то пло­щадь S рамки равна:



15
Задание № 1159
i

Груз, на­хо­дя­щий­ся на глад­кой го­ри­зон­таль­ной по­верх­но­сти и при­креплённый к не­ве­со­мой пру­жи­не (см. рис.), со­вер­ша­ет гар­мо­ни­че­ские ко­ле­ба­ния с ам­пли­ту­дой А = 4,0 см. Если мак­си­маль­ная ки­не­ти­че­ская энер­гия груза (Wк)max = 28 мДж, то жест­кость k пру­жи­ны равна:



16
Задание № 1160
i

На ди­фрак­ци­он­ную решётку, каж­дый мил­ли­метр ко­то­рой со­дер­жит N = 500 штри­хов, нор­маль­но па­да­ет па­рал­лель­ный пучок мо­но­хро­ма­ти­че­ско­го света. Если длина све­то­вой волны λ = 250 нм, то по­ря­док m ди­фрак­ци­он­но­го мак­си­му­ма, на­блю­да­е­мо­го под углом α = 30° к нор­ма­ли к нор­ма­ли, равен:



17
Задание № 1161
i

На диа­грам­ме изоб­ра­же­ны энер­ге­ти­че­ские уров­ни атома во­до­ро­да (см. рис.). Если атом во­до­ро­да пе­ре­шел с тре­тье­го (n  =  3) энер­ге­ти­че­ско­го уров­ня на вто­рой (n  =  2), то энер­гия атома:



18
Задание № 1162
i

Рас­сто­я­ние между то­чеч­ным ис­точ­ни­ком света и его изоб­ра­же­ни­ем в плос­ком зер­ка­ле L1  =  50 см. Если рас­сто­я­ние между зер­ка­лом и ис­точ­ни­ком умень­шит­ся на Δl  =  10 см, то рас­сто­я­ние L2 между ис­точ­ни­ком света и его новым изоб­ра­же­ни­ем ста­нет рав­ным:



19
Задание № 1163
i

С башни, вы­со­та ко­то­рой h = 9,8 м, в го­ри­зон­таль­ном на­прав­ле­нии бро­си­ли ка­мень. Если не­по­сред­ствен­но перед па­де­ни­ем на землю ско­рость камня была на­прав­ле­на под углом α = 45° к го­ри­зон­ту, то мо­дуль на­чаль­ной ско­ро­сти υ0 камня был равен ... м/с.


Ответ:

20
Задание № 1164
i

Ки­не­ма­ти­че­ский закон дви­же­ния тела вдоль оси Ox имеет вид x(t) = A + Bt + Ct2, где A  =  2,0 м, B  =  1,0 м/с, C  =  −3,0 м/с2. Если масса тела m = 2,0 кг, то мо­дуль ре­зуль­ти­ру­ю­щей всех сил F, при­ло­жен­ных к телу, равен ... Н.


Ответ:

21
Задание № 1165
i

Тело мас­сой m = 100 г сво­бод­но па­да­ет без на­чаль­ной ско­ро­сти с вы­со­ты h над по­верх­но­стью Земли. Если на вы­со­те h1  =  6,0 м ки­не­ти­че­ская энер­гия тела Eк  =  12 Дж, то вы­со­та h равна ... м.


Ответ:

22
Задание № 1166
i

На ри­сун­ке пред­став­ле­ны фо­то­гра­фии элек­тро­мо­би­ля, сде­лан­ные через рав­ные про­ме­жут­ки вре­ме­ни Δt  =  1,2 c. Если элек­тро­мо­биль дви­гал­ся пря­мо­ли­ней­но и рав­но­уско­рен­но, то в мо­мент вре­ме­ни, когда был сде­лан вто­рой сни­мок, про­ек­ция ско­ро­сти дви­же­ния элек­тро­мо­би­ля υx на ось Ox была равна ... км/ч.


Ответ:

23
Задание № 1167
i

При тем­пе­ра­ту­ре t1  =  −5 °C сред­няя квад­ра­тич­ная ско­рость по­сту­па­тель­но­го дви­же­ния мо­ле­кул иде­аль­но­го газа <υкв1> = 200 м/с. Мо­ле­ку­лы этого газа имеют сред­нюю квад­ра­тич­ную ско­рость <υкв2> = 280 м/с при тем­пе­ра­ту­ре t2 газа, рав­ной ... °C. Ответ округ­ли­те до це­ло­го числа.


Ответ:

24
Задание № 1168
i

В теп­ло­изо­ли­ро­ван­ный сосуд, со­дер­жа­щий m1 = 100 г льда (λ = 330 кДж/кг) при тем­пе­ра­ту­ре плав­ле­ния t1 = 0 °C, влили воду (c = 4,2 103 Дж/(кг °С)) мас­сой m2 = 50 г при тем­пе­ра­ту­ре t2 = 88 °C. После уста­нов­ле­ния теп­ло­во­го рав­но­ве­сия масса m3 льда в со­су­де ста­нет рав­ной ... г.


Ответ:

25
Задание № 1169
i

В вер­ти­каль­ном ци­лин­дри­че­ском со­су­де, за­кры­том снизу лег­ко­по­движ­ным порш­нем мас­сой m  =  10 кг и пло­ща­дью по­пе­реч­но­го се­че­ния S  =  40 см2, со­дер­жит­ся иде­аль­ный од­но­атом­ный газ. Сосуд на­хо­дит­ся в воз­ду­хе, ат­мо­сфер­ное дав­ле­ние ко­то­ро­го р0  =  100 кПа. Если при изо­бар­ном на­гре­ва­нии газа пор­шень пе­ре­ме­стил­ся на рас­сто­я­ние |Δh| = 12 см, то ко­ли­че­ство теп­ло­ты Q, сообщённое газу, равно ... Дж.


Ответ:

26
Задание № 1170
i

Из ядер­но­го ре­ак­то­ра из­влек­ли об­ра­зец, со­дер­жа­щий ра­дио­ак­тив­ный изо­топ с пе­ри­о­дом по­лу­рас­па­да T1/2  =  8,0 суток. Если на­чаль­ная масса изо­то­па, со­дер­жа­ще­го­ся в об­раз­це, m0  =  160 мг, то через про­ме­жу­ток вре­ме­ни Δt  =  24 суток масса m изо­то­па в об­раз­це будет равна ... мг.


Ответ:

27
Задание № 1171
i

Два на­хо­дя­щих­ся в ва­ку­у­ме ма­лень­ких за­ря­жен­ных ша­ри­ка, за­ря­ды ко­то­рых q1 = q2 = 40 нКл мас­сой m  =  8,0 мг каж­дый под­ве­ше­ны в одной точке на лёгких шёлко­вых нитях оди­на­ко­вой длины. Если ша­ри­ки разо­шлись так, что угол между ни­тя­ми со­ста­вил α = 90°, то длина каж­дой нити l равна ... см.


Ответ:

28
Задание № 1172
i

Уча­сток цепи, со­сто­я­щий из че­ты­рех ре­зи­сто­ров (см. рис.), со­про­тив­ле­ния ко­то­рых R1  =  5,0 Ом, R2  =  10,0 Ом, R3  =  15,0 Ом и R4  =  20,0 Ом, под­клю­чен к ис­точ­ни­ку тока с ЭДС ε = 10,0 В и внут­рен­ним со­про­тив­ле­ни­ем r  =  10,0 Ом. Теп­ло­вая мощ­ность P1, вы­де­ля­е­мая в ре­зи­сто­ре R1, равна ... мВт.


Ответ:

29
Задание № 1173
i

Ко­рот­кий све­то­вой им­пульс, ис­пу­щен­ный ла­зер­ным даль­но­ме­ром, от­ра­зил­ся от объ­ек­та и был за­ре­ги­стри­ро­ван этим же даль­но­ме­ром через про­ме­жу­ток вре­ме­ни Δt = 0,760 мкс после ис­пус­ка­ния. Рас­сто­я­ние s от даль­но­ме­ра до объ­ек­та равно ... м.


Ответ:

30
Задание № 1174
i

В элек­три­че­ской цепи, схема ко­то­рой пред­став­ле­на на ри­сун­ке, ёмко­сти кон­ден­са­то­ров C1  =  40 мкФ, C2  =  120 мкФ, ЭДС ис­точ­ни­ка тока ε = 90,0 В. Со­про­тив­ле­ние ре­зи­сто­ра R2 в два раза боль­ше со­про­тив­ле­ния ре­зи­сто­ра R1, то есть R2 = 2R1. В на­чаль­ный мо­мент вре­ме­ни ключ K за­мкнут и через ре­зи­сто­ры про­те­ка­ет по­сто­ян­ный ток. Если внут­рен­нее со­про­тив­ле­ние ис­точ­ни­ка тока пре­не­бре­жи­мо мало, то после раз­мы­ка­ния ключа K в ре­зи­сто­ре R2 вы­де­лит­ся ко­ли­че­ство теп­ло­ты Q2, рав­ное ... мДж.


Ответ:
Завершить работу, свериться с ответами, увидеть решения.